Space_ops¶
manimlib/utils/space_ops.py
这个文件中主要实现了和空间坐标计算有关的函数
- manimlib.utils.space_ops.get_norm(vect: Iterable) float ¶
返回向量 vect 的模长
- manimlib.utils.space_ops.quaternion_mult(*quats: Sequence[float]) list[float] ¶
返回两个 四元数 q1, q2 相乘的乘积
- manimlib.utils.space_ops.quaternion_from_angle_axis(angle: float, axis: ndarray) list[float] ¶
根据 轴-角 确定用于旋转的 四元数
返回[cos(angle/2), sin(angle/2)*axis]
- manimlib.utils.space_ops.angle_axis_from_quaternion(quat: Sequence[float]) tuple[float, np.ndarray] ¶
返回从四元数确定旋转的轴和角
- manimlib.utils.space_ops.quaternion_conjugate(quaternion: Iterable) list ¶
返回 quaternion 的共轭四元数
- manimlib.utils.space_ops.rotate_vector(vector: Iterable, angle: float, axis: np.ndarray = array([0., 0., 1.])) np.ndarray | list[float] ¶
返回将vector以axis为轴,旋转angle角度后的向量
若 vector 是二维 ndarray,则使用复数运算
若 vector 是三维 ndarray,则使用四元数运算
- manimlib.utils.space_ops.thick_diagonal(dim: int, thickness: int = 2) ndarray ¶
返回一个 dim*dim 大小,对角线宽度为 thickness 的方阵
- manimlib.utils.space_ops.rotation_matrix_transpose_from_quaternion(quat: Iterable) np.ndarray ¶
返回通过四元数确定的旋转矩阵(但是转置的)
- manimlib.utils.space_ops.rotation_matrix_from_quaternion(quat: Iterable) np.ndarray ¶
返回通过四元数确定的旋转矩阵
- manimlib.utils.space_ops.rotation_matrix_transpose(angle: float, axis: ndarray) ndarray ¶
返回通过角 angle 轴 axis 确定的旋转矩阵(但是转置的)
- manimlib.utils.space_ops.rotation_matrix(angle: float, axis: ndarray) ndarray ¶
Rotation in R^3 about a specified axis of rotation.
返回通过角 angle 轴 axis 确定的旋转矩阵
- manimlib.utils.space_ops.rotation_about_z(angle: float) list[list[float]] ¶
返回沿 z 轴旋转 angle 的旋转矩阵
- manimlib.utils.space_ops.z_to_vector(vector: ndarray) ndarray ¶
返回可以使 z 轴方向旋转到 vector 方向的变换矩阵
- manimlib.utils.space_ops.angle_of_vector(vector: Sequence[float]) float ¶
Returns polar coordinate theta when vector is project on xy plane
返回 vector 在 xy 平面投影的极坐标系下的 theta
- manimlib.utils.space_ops.angle_between_vectors(v1: ndarray, v2: ndarray) float ¶
Returns the angle between two 3D vectors. This angle will always be btw 0 and pi
返回两向量 v1, v2 的夹角
- manimlib.utils.space_ops.project_along_vector(point: ndarray, vector: ndarray) ndarray ¶
点在向量上的投影
- manimlib.utils.space_ops.normalize(vect: ndarray, fall_back: ndarray | None = None) ndarray ¶
返回 vect 的单位向量
若 vect 为零向量,且 fall_back=None,返回零向量
若 vect 为零向量,且 fall_back不为None,返回 fall_back
- manimlib.utils.space_ops.normalize_along_axis(array: ndarray, axis: ndarray) ndarray ¶
将所有向量沿 axis 单位化
- manimlib.utils.space_ops.cross(v1: ndarray, v2: ndarray) list[ndarray] ¶
返回两向量 v1, v2 的叉积
- manimlib.utils.space_ops.get_unit_normal(v1: ndarray, v2: ndarray, tol: float = 1e-06) ndarray ¶
返回向量 v1, v2 确定的平面的法向量
- manimlib.utils.space_ops.compass_directions(n: int = 4, start_vect: ndarray = array([1., 0., 0.])) ndarray ¶
将 TAU 分成 n 份,从 start_vect 开始返回沿每个方向的单位向量
- manimlib.utils.space_ops.complex_to_R3(complex_num: complex) ndarray ¶
复数转化为坐标(z 轴为 0)
- manimlib.utils.space_ops.R3_to_complex(point: Sequence[float]) complex ¶
取坐标前两轴为复数
- manimlib.utils.space_ops.complex_func_to_R3_func(complex_func: Callable[[complex], complex]) Callable[[np.ndarray], np.ndarray] ¶
将针对复数的函数转化为针对坐标的函数
- manimlib.utils.space_ops.center_of_mass(points: Iterable[npt.ArrayLike]) np.ndarray ¶
返回点集 points 的重心
- manimlib.utils.space_ops.midpoint(point1: Sequence[float], point2: Sequence[float]) np.ndarray ¶
返回 point1,point2 的中点
- manimlib.utils.space_ops.line_intersection(line1: Sequence[Sequence[float]], line2: Sequence[Sequence[float]]) np.ndarray ¶
return intersection point of two lines, each defined with a pair of vectors determining the end points
返回两直线交点
注意: 需要使用
get_start_and_end()
p = line_intersection(
l1.get_start_and_end(),
l2.get_start_and_end()
)
- manimlib.utils.space_ops.find_intersection(p0: npt.ArrayLike, v0: npt.ArrayLike, p1: npt.ArrayLike, v1: npt.ArrayLike, threshold: float = 1e-05) np.ndarray ¶
Return the intersection of a line passing through p0 in direction v0 with one passing through p1 in direction v1. (Or array of intersections from arrays of such points/directions). For 3d values, it returns the point on the ray p0 + v0 * t closest to the ray p1 + v1 * t
过 p0 点,v0 向量方向上的射线 l1,与过 p1 点,v1 的向量上的射线 l2 的交点
如果是三维的情况,则返回两射线距离最近的点
- manimlib.utils.space_ops.get_closest_point_on_line(a: ndarray, b: ndarray, p: ndarray) ndarray ¶
It returns point x such that x is on line ab and xp is perpendicular to ab. If x lies beyond ab line, then it returns nearest edge(a or b).
找到点 p 到 线段 ab 距离最近的点 x
如果 p 点投影在线段 ab 上,则返回垂足
如果 p 点投影不在线段 ab 上,则返回与投影最接近的线段端点
- manimlib.utils.space_ops.get_winding_number(points: Iterable[float]) float ¶
返回卷绕数
- manimlib.utils.space_ops.cross2d(a: ndarray, b: ndarray) ndarray ¶
二阶矩阵相乘,如果 a 不是二阶矩阵,则返回
a[0] * b[1] - b[0] * a[1]
- manimlib.utils.space_ops.tri_area(a: Sequence[float], b: Sequence[float], c: Sequence[float]) float ¶
- manimlib.utils.space_ops.is_inside_triangle(p: ndarray, a: ndarray, b: ndarray, c: ndarray) bool ¶
Test if point p is inside triangle abc
判断点 p 是否在点 a, b, c 构成的三角形中
- manimlib.utils.space_ops.norm_squared(v: Sequence[float]) float ¶
三维向量模长平方
(似乎可以用其他方法计算任意维度向量模长平方,例如 (v ** 2).sum()
)
- manimlib.utils.space_ops.earclip_triangulation(verts: ndarray, ring_ends: list[int]) list ¶
Returns a list of indices giving a triangulation of a polygon, potentially with holes
verts is a numpy array of points
ring_ends is a list of indices indicating where the ends of new paths are
三角剖分